NCEPLIBS-ip  5.1.0
Introduction
Previous versions: 5.0.0, 4.4.0, 4.3.0, 4.2.0, 4.1.0, 4.0.0

The NCEP general interpolation library (NCEPLIBS-ip) contains Fortran 90 subprograms to be used for interpolating between nearly all grids used at NCEP. The library is particularly efficient when interpolating many fields at one time. It also contains functionality for interpolating, transforming, and otherwise manipulating spectral data (these functions were formerly contained in the NCEPLIBS-sp library).

NCEPLIBS-ip supports compilation with the GNU Compiler Collection (gfortran), Intel Classic (ifort), and Intel OneAPI (ifx) compilers. In the case of Intel OneAPI (IntelLLVM), it is recommended to use at least version 2023.2.1 to avoid any number of compiler issues.

Note
Some routines may behave poorly or unpredictably when using 4-byte reals (libip_4). For instance, there is an ATAN2 function used for polar stereo grids where for certain regions of certain grids, floating point differences between 4-byte output values (~1e-7) can be amplified into sizable differences in output field values. Some applications may therefore benefit from the use of 8-byte reals (libip_d or libip_8).

NCEPLIBS-ip uses several BLAS/LAPACK routines in the splat() subroutine, and therefore requires an external BLAS/LAPACK provider. In practice, this should generally be OpenBLAS, which is the spack-stack BLAS/LAPACK provider.

Interpolation

Interpolation Methods

There are currently six interpolation methods available in the library:

  • bilinear
  • bicubic
  • neighbor
  • budget
  • spectral
  • neighbor-budget

Some of the methods have interpolation sub-options. A few methods have restrictions on the type of input or output grids.

Several methods can perform interpolation on fields with bitmaps (i.e. some points on the input grid may be undefined). In this case, the bitmap is interpolated to the output grid. Only valid input points are used to interpolate to valid output points. An output bitmap will also be created to locate invalid data where the output grid extends outside the domain of the input grid.

The driver routines for interpolating scalars and vectors may be found in ipolates_mod. The interpolation method is chosen via the first argument of these routines (variable IP). Sub-options are set via the IPOPT array.

Bilinear Interpolation Method

Bilinear interpolation is chosen by setting IP=0.

This method has two sub-options:

  1. The percent of valid input data required to make output data (the default is 50%).
  2. If valid input data is not found near an a spiral search may be performed. The spiral search is only an option for scalar data.

The bilinear method has no restrictions and can interpolate with bitmaps.

Bicubic Interpolation Method

Bicubic interpolation is chosen by setting IP=1.

This method has two sub-options:

  1. A monotonic constraint option for straight bicubic or for constraining the output value to be within the range of the four surrounding input values.
  2. The percent of valid input data required to make output data, which defaults to 50%.

The bicubic method cannot interpolate data with bitmaps.

Neighbor Interpolation Method

Neighbor interpolation is chosen by setting IP=2.

Neighbor interpolation means that the output value is set to the nearest input value. It would be appropriate for interpolating integer fields such as vegetation index.

This method has one sub-option: If valid input data is not found near an an output point, a spiral search is optionally performed.

The neighbor method has no restrictions and can interpolate with bitmaps.

Budget Interpolation Method

Budget interpolation is chosen by setting IP=3.

Budget interpolation means a low-order interpolation method that quasi-conserves area averages. It would be appropriate for interpolating budget fields such as precipitation.

This method assumes that the field really represents box averages where each box extends halfway to its neighboring grid point in each direction. The method actually averages bilinearly interpolated values in a square array of points distributed within each output grid box.

There are several sub-options:

  1. The number of points in the radius of the square array may be set. The default is 2, meaning that 25 sample points will be averaged for each output value.
  2. The respective averaging weights for the radius points are adjustable. The default is for all weights equal to 1, giving an unweighted average.
  3. Optionally, one may assume the boxes stretch nearly all the way to each of the neighboring grid points and the weights are the adjoint of the bilinear interpolation weights.
  4. The percent of valid input data required to make output data is adjustable. The default is 50%.
  5. In cases where there is no or insufficient valid input data, a spiral search may be invoked to search for the nearest valid data. search square (scalar interpolation only).

This method can interpolate data with bitmaps.

Spectral Interpolation Method

The spectral interpolation scheme is chosen by setting IP=4.

This method has two sub-options:

  1. set the spectral shape (triangular or rhomboidal)
  2. set the spectral truncation.

The input grid must be a global cylindrical grid (either Gaussian or equidistant). This method cannot interpolate data with bitmaps.

Unless the output grid is a global cylindrical grid, a polar stereographic grid centered at the pole, or a Mercator grid, this method can be quite expensive.

Neighbor-Budget Interpolation Method

Neighbor-budget interpolation is chosen by setting IP=6.

This method computes weighted averages of neighbor points arranged in a square box centered around each output grid point and stretching nearly halfway to each of the neighboring grid points. The main difference with the budget interpolation (IP=3) is neighbor vs bilinear interpolation of the square box of points.

There are the following sub-options:

  1. The number of points in the radius of the square array may be set. The default is 2, meaning that 25 sample points will be averaged for each output value.
  2. The respective averaging weights for the radius points are adjustable. The default is for all weights equal to 1, giving an unweighted average.
  3. The percent of valid input data required to make output data is adjustable. The default is 50%.

Vectors and Scalars

The library can handle two-dimensional vector fields as well as scalar fields. The input and output vectors are rotated if necessary so that they are either resolved relative to their defined grid in the direction of increasing x and y coordinates or resolved relative to eastward and northward directions on the earth. The rotation is determined by the grid definitions.

Vectors are generally interpolated (by all methods except spectral interpolation) by moving the relevant input vectors along a great circle to the output point, keeping their orientations with respect to the great circle constant, before independently interpolating the respective components. This ensures that vector interpolation will be consistent over the whole globe including the poles.

Grids

The input and output grids are defined by their respective GRIB2 grid definition template and template number as decoced by the NCEP G2 library. There are six map projections recognized by the library:

Grid Template Number Map projection
00 Equidistant cyclindrical
01 Rotated equidistant cylindrical
10 Mercator cyclindrical
20 Polar stereographic azimuthal
30 Lambert conformal conical
40 Gaussian equidistant cyclindrical

If the output grid definition template number is negative, then the output data may be just a set of station points. In this case, the user must pass the number of points to be output along with their latitudes and longitudes.

For vector interpolation, the vector rotations parameters must also be passed. On the other hand, for non-negative output data representation types, the number of output grid points and their latitudes and longitudes (and the vector rotation parameters for vector interpolation) are all returned by the interpolation subprograms.

If an output equidistant cylindrical grid contains multiple pole points, then the pole points are forced to be self-consistent. That is, scalar fields are obliged to be constant at the pole and vector components are obliged to exhibit a wavenumber one variation at the pole.

Generally, only regular grids can be interpolated in this library. However, the thinned WAFS grids may be expanded to a regular grid (or vice versa) using subprograms ipxwafs(), ipxwafs2(), or ipxwafs3(). Eta data (with Arakawa "E" staggering) on the "H" or "V" grid may be expanded to a filled regular grid (or vice versa) using subprogram ipxetas().

Return Codes

The return code issued by an interpolation subprogram determines whether it ran successfully or how it failed. Check nonzero return codes against the docblock of the respective subprogram.

Entry point list: interpolation

Scalar and vecotr field interpolation subprograms can be found in the relevant module documentation:

Name Function
ipolates_mod Iredell's polate
bilinear_interp_mod bilinear interpolation
bicubic_interp_mod bicubic interpolation
neighbor_interp_mod neighbor interpolation
budget_interp_mod budget interpolation
spectral_interp_mod spectral interpolation
neighbor_budget_interp_mod neighbor-budget interpolation
polfixs() make multiple pole scalar values consistent
movect() move a vector along a great circle
polfixv() make multiple pole vector values consistent

Grid description section decoders:

Name Function
gdswzd() grid description section (GDS) wizard
gdswzd_c() C wrapper for calling gdswzd
gdswzd_equid_cylind() GDS wizard for equidistant cyclindrical
gdswzd_mercator() GDS wizard for mercator cyclindrical
gdswzd_lambert_conf() GDS wizard for lambert conformal conical
gdswzd_gaussian() GDS wizard for gaussian cyclindrical
gdswzd_polar_stereo() GDS wizard for polar stereographic
gdswzd_rot_equid_cylind_egrid() GDS wizard for rotated equidistant cyclindrical "e" stagger.
gdswzd_rot_equid_cylind() GDS wizard for rotated equidistant cyclindrical non "e" stagger.
field_pos() return field position for a given grid point

Transform subprograms for special irregular grids:

Name Function
ipxwafs() expand or contract wafs grids
ipxwafs2() expand or contract wafs grids
ipxwafs3() expand or contract wafs grids

Spectral Transformation & Processing

The library's spectral processing subroutines can handle both scalar and two-dimensional vector fields. Each vector field will be represented in spectral space appropriately by its respective spherical divergence and curl (vorticity), thus avoiding the pole problems associated with representing components separately.

Some of the functions performed by the library are spectral interpolations between two grids, spectral truncations in place on a grid, and basic spectral transforms between grid and wave space. Only global Gaussian or global equidistant cylindrical grids are allowed for transforming into wave space. There are no such restricitions on grids for transforming from wave space. However, there are special fast entry points for transforming wave space to polar stereographic and Mercator grids as well as the aforementioned cylindrical grids.

The indexing of the cylindrical transform grids is totally general. The grids may run north to south or south to north; they may run east to west or west to east; they may start at any longitude as long as the prime meridian is on the grid; they may be dimensioned in any order (e.g. (i,j,k), (k,j,i), (i,k,nfield,j), etc.). Furthermore, the transform may be performed on only some of the latitudes at one time as long as both hemisphere counterparts are transformed at the same time (as in the global spectral model). The grid indexing will default to the customary global indexing, i.e. north to south, east to west, prime meridian as first longitude, and (i,j,k) order.

The wave space may be either triangular or rhomboidal in shape. Its internal indexing is strictly "IBM order", i.e. zonal wavenumber is the slower index with the real and imaginary components always paired together. The imaginary components of all the zonally symmetric modes should always be zero, as should the global mean of any divergence and vorticity fields. The stride between the start of successive wave fields is general, defaulting to the computed length of each field.

Entry Point List: Spectral Interpolation & Transformation

Spectral interpolations or truncations between grid and grid

Name Function
sptrun() Spectrally truncate gridded scalar fields
sptrunv() Spectrally truncate gridded vector fields
sptrung() Spectrally interpolate scalars to stations
sptrungv() Spectrally interpolate vectors to stations
sptruns() Spectrally interpolate scalars to polar stereo
sptrunsv() Spectrally interpolate vectors to polar stereo
sptrunm() Spectrally interpolate scalars to Mercator
sptrunmv() Spectrally interpolate vectors to Mercator

Spectral transforms between wave and grid

Name Function
sptran() Perform a scalar spherical transform
sptranv() Perform a vector spherical transform
sptrand() Perform a gradient spherical transform
sptgpt() Transform spectral scalar to station points
sptgptv() Transform spectral vector to station points
sptgptd() Transform spectral to station point gradients
sptgps() Transform spectral scalar to polar stereo
sptgpsv() Transform spectral vector to polar stereo
sptgpsd() Transform spectral to polar stereo gradients
sptgpm() Transform spectral scalar to Mercator
sptgpmv() Transform spectral vector to Mercator
sptgpmd() Transform spectral to Mercator gradients

Spectral transform utilities

Name Function
spwget() Get wave-space constants
splat() Compute latitude functions
speps() Compute utility spectral fields
splegend() Compute Legendre polynomials
spanaly() Analyze spectral from Fourier
spsynth() Synthesize Fourier from spectral
spdz2uv() Compute winds from divergence and vorticity
spuv2dz() Compute divergence and vorticity from winds
spgradq() Compute gradient in spectral space
splaplac() Compute Laplacian in spectral space

Examples: Interpolation Routines

Example 1. Read a grib 2 file of scalar data on a global regular 1-deg lat/lon grid and call ipolates to interpolate it to NCEP standard grid 218, a lambert conformal grid. Uses the NCEP G2 library to degrib the data.

program example_1
use ip_mod
use grib_mod ! ncep grib 2 library
implicit none
character(len=100) :: input_file
integer :: iunit, iret, lugi
integer :: mi, mo, no
integer, allocatable :: ibi(:), ibo(:)
integer :: ip, ipopt(20)
integer :: j, jdisc, jpdtn, jgdtn, k, km
integer :: jids(200), jgdt(200), jpdt(200)
integer :: idim_input, jdim_input
integer :: idim_output, jdim_output
logical :: unpack
logical*1, allocatable :: input_bitmap(:,:), output_bitmap(:,:)
real, allocatable :: input_data(:,:)
real, allocatable :: output_rlat(:), output_rlon(:)
real, allocatable :: output_data(:,:)
type(gribfield) :: gfld_input
!---------------------------------------------------------------------------
! the output grid specs. this is ncep grid 218, a lambert conformal
! grid. the grid definition information is stored in section 3
! of a grib 2 message.
!---------------------------------------------------------------------------
integer, parameter :: igdtnum218 = 30 ! grid definition template number.
! "30" is lambert conformal.
integer, parameter :: igdtlen218 = 22 ! number of array elements needed
! for a lambert conf. grid definition
! template.
integer :: igdtmpl218(igdtlen218) ! the grid definition template.
! the entries are:
! 1 -shape of earth, oct 15
! 2 -scale factor, spherical earth, oct 16
! 3 -scaled value, spherical earth, octs 17-20
! 4 -scale factor, major axis of
! elliptical earth, oct 21
! 5 -scaled value of major axis of
! elliptical earth, octs 22-25
! 6 -scale factor, minor axis of
! elliptical earth, oct 26
! 7 -scaled value of minor axis of
! elliptical earth, octs 27-30
! 8 -number points along x-axis, octs 31-34
! 9 -number points along y-axis, octs 35-38
! 10-latitude of first point, octs 39-42
! 11-longitude of first point, octs 43-46
! 12-resolution and component flags, oct 47
! 13-latitude where grid lengths specified,
! octs 48-51
! 14-longitude parallel to y-axis, octs 52-55
! 15-x-direction grid length, octs 56-59
! 16-y-direction grid length, octs 60-63
! 17-projection center flag, oct 64
! 18-scanning mode, oct 65
! 19-first tangent latitude from pole, octs 66-69
! 20-second tangent latitude from pole, octs 70-73
! 21-latitude of south pole, octs 74-77
! 22-longitude of south pole, octs 78-81
integer, parameter :: missing=b'11111111111111111111111111111111'
data igdtmpl218 / 6, 255, missing, 255, missing, 255, missing, 614, 428, &
12190000, 226541000, 56, 25000000, 265000000, &
12191000, 12191000, 0, 64, 25000000, 25000000, -90000000, 0/
!---------------------------------------------------------------------------
! open the grib 2 file containing data to be interpolated. for this
! example, there are two data records.
!---------------------------------------------------------------------------
iunit=9
input_file="${path}/input.data.grib2"
call baopenr (iunit, input_file, iret)
!---------------------------------------------------------------------------
! prep for call to g2 library to degrib data. the data are on a regular
! lat/lon grid with i/j dimension of 360/181.
!---------------------------------------------------------------------------
idim_input = 360 ! the i/j dimensions of input grid
jdim_input = 181
mi = idim_input * jdim_input ! total number of pts, input grid
jdisc = -1 ! search for any discipline
jpdtn = -1 ! search for any product definition template number
jgdtn = 0 ! search for grid definition template number 0 - regular lat/lon grid
jids = -9999 ! array of values in identification section, set to wildcard
jgdt = -9999 ! array of values in grid definition template 3.m
jgdt(8) = idim_input ! search for grid with i/j of 360/181
jgdt(9) = jdim_input
jpdt = -9999 ! array of values in product definition template 4.n
unpack = .true. ! unpack data
lugi = 0 ! no index file
nullify(gfld_input%idsect)
nullify(gfld_input%local)
nullify(gfld_input%list_opt)
nullify(gfld_input%igdtmpl) ! holds the grid definition template information
nullify(gfld_input%ipdtmpl)
nullify(gfld_input%coord_list)
nullify(gfld_input%idrtmpl)
nullify(gfld_input%bmap) ! holds the bitmap
nullify(gfld_input%fld) ! holds the data
!---------------------------------------------------------------------------
! degrib the data. non-zero "iret" indicates a problem during degrib.
!---------------------------------------------------------------------------
km = 2 ! number of records to interpolate
allocate(ibi(km))
allocate(input_bitmap(mi,km))
allocate(input_data(mi,km))
do j = 0, (km-1) ! number of records to skip
call getgb2(iunit, lugi, j, jdisc, jids, jpdtn, jpdt, jgdtn, jgdt, &
unpack, k, gfld_input, iret)
if (iret /= 0) stop
!---------------------------------------------------------------------------
! does input data have a bitmap?
!---------------------------------------------------------------------------
if (gfld_input%ibmap==0) then ! input data has bitmap
ibi(k) = 1 ! tell ipolates to use bitmap
input_bitmap(:,k) = gfld_input%bmap
else ! no bitmap, data everywhere
ibi(k) = 0 ! tell ipolates there is no bitmap
input_bitmap(:,k) = .true.
endif
input_data(:,k) = gfld_input%fld ! the input data field
enddo
call baclose (iunit, iret)
!---------------------------------------------------------------------------
! setup arguments for ipolates (scalar interpolation) call.
!---------------------------------------------------------------------------
ip = 0 ! bilinear interpolation
ipopt = 0 ! options for bilinear:
ipopt(1) = 75 ! set minimum mask to 75%
!---------------------------------------------------------------------------
! the i/j dimensions of the output grid.
!---------------------------------------------------------------------------
idim_output = igdtmpl218(8)
jdim_output = igdtmpl218(9)
mo = idim_output * jdim_output ! total number of output pts
!---------------------------------------------------------------------------
! will hold the latitude, longitude, data and bitmap on the output grid,
! which are computed in ipolates.
!---------------------------------------------------------------------------
allocate (ibo(km)) ! bitmap flags on output grid
allocate (output_rlat(mo))
allocate (output_rlon(mo))
allocate (output_data(mo,km))
allocate (output_bitmap(mo,km))
!---------------------------------------------------------------------------
! call ipolates to interpolate scalar data. non-zero "iret" indicates
! a problem.
!---------------------------------------------------------------------------
call ipolates(ip, ipopt, gfld_input%igdtnum, gfld_input%igdtmpl, &
gfld_input%igdtlen, igdtnum218, igdtmpl218, igdtlen218, &
mi, mo, km, ibi, input_bitmap, input_data, no, output_rlat, &
output_rlon, ibo, output_bitmap, output_data, iret)
if (iret /= 0) stop
!---------------------------------------------------------------------------
! write interpolated data to file. if ipolates computed a bitmap (ibo==1)
! for the output grid, one may mask out this data with a flag value.
!---------------------------------------------------------------------------
open (10, file="./output.bin", access='direct', recl=idim_output*jdim_output*4)
do k = 1, km
if(ibo(k)==1) where (.not. output_bitmap(:,k)) output_data(:,k) = -999.
write(10, rec=k) output_data(:,k)
enddo
write(10, rec=km+1) output_rlat
write(10, rec=km+2) output_rlon
close(10)
end program example_1
Top-level module for the ip library which re-exports public routines such as ipolates,...
Definition: ip_mod.F90:6

Example 2. Read a grib 2 file of u/v wind data on a global regular 1-deg lat/lon grid and call ipolatev to interpolate it to four random station points. Uses the NCEP G2 library to degrib the data.

program example_2
use grib_mod ! ncep grib 2 library
implicit none
character(len=100) :: input_file
integer :: iunit, iret, lugi
integer :: mi, mo, no
integer :: ibi, ibo
integer :: ip, ipopt(20)
integer :: j, jdisc, jpdtn, jgdtn, k, km
integer :: jids(200), jgdt(200), jpdt(200)
integer :: idim_input, jdim_input
logical :: unpack
logical*1, allocatable :: input_bitmap(:), output_bitmap(:)
real, allocatable :: input_u_data(:), input_v_data(:)
real, allocatable :: output_rlat(:), output_rlon(:)
real, allocatable :: output_crot(:), output_srot(:)
real, allocatable :: output_u_data(:), output_v_data(:)
type(gribfield) :: gfld_input
!---------------------------------------------------------------------------
! the output "grid" is a series of random station points. in this case,
! set the grid definition template number of a negative number.
! the grid definition template array information is not used, so set
! to a flag value.
!---------------------------------------------------------------------------
integer, parameter :: igdtnumo = -1
integer, parameter :: igdtleno = 1
integer :: igdtmplo(igdtleno)
data igdtmplo / -9999 /
!---------------------------------------------------------------------------
! open the grib 2 file containing data to be interpolated. for this
! example, there is one record of u-wind and v-wind.
!---------------------------------------------------------------------------
iunit=9
input_file="./reg_tests/copygb2/data/uv_wind.grb2"
call baopenr (iunit, input_file, iret)
!---------------------------------------------------------------------------
! prep for call to g2 library to degrib data. the data are on a regular
! lat/lon grid with i/j dimension of 360/181.
!---------------------------------------------------------------------------
idim_input = 360 ! the i/j dimensions of input grid
jdim_input = 181
mi = idim_input * jdim_input ! total number of pts, input grid
jdisc = -1 ! search for any discipline
jpdtn = -1 ! search for any product definition template number
jgdtn = 0 ! search for grid definition template number 0 - regular lat/lon grid
jids = -9999 ! array of values in identification section, set to wildcard
jgdt = -9999 ! array of values in grid definition template 3.m
jgdt(8) = idim_input ! search for grid with i/j of 360/181
jgdt(9) = jdim_input
jpdt = -9999 ! array of values in product definition template 4.n
unpack = .true. ! unpack data
lugi = 0 ! no index file
nullify(gfld_input%idsect)
nullify(gfld_input%local)
nullify(gfld_input%list_opt)
nullify(gfld_input%igdtmpl) ! holds the grid definition template information
nullify(gfld_input%ipdtmpl)
nullify(gfld_input%coord_list)
nullify(gfld_input%idrtmpl)
nullify(gfld_input%bmap) ! holds the bitmap
nullify(gfld_input%fld) ! holds the data
!---------------------------------------------------------------------------
! degrib the data. non-zero "iret" indicates a problem during degrib.
!---------------------------------------------------------------------------
allocate(input_bitmap(mi))
allocate(input_u_data(mi))
allocate(input_v_data(mi))
!---------------------------------------------------------------------------
! read u-wind record.
!---------------------------------------------------------------------------
j = 0
call getgb2(iunit, lugi, j, jdisc, jids, jpdtn, jpdt, jgdtn, jgdt, &
unpack, k, gfld_input, iret)
if (iret /= 0) stop
!---------------------------------------------------------------------------
! does input data have a bitmap?
!---------------------------------------------------------------------------
if (gfld_input%ibmap==0) then ! input data has bitmap
ibi = 1 ! tell ipolates to use bitmap
input_bitmap = gfld_input%bmap
else ! no bitmap, data everywhere
ibi = 0 ! tell ipolates there is no bitmap
input_bitmap = .true.
endif
input_u_data = gfld_input%fld ! the input u-wind data
!---------------------------------------------------------------------------
! read v-wind record.
!---------------------------------------------------------------------------
j = 1
call getgb2(iunit, lugi, j, jdisc, jids, jpdtn, jpdt, jgdtn, jgdt, &
unpack, k, gfld_input, iret)
if (iret /= 0) stop
input_v_data = gfld_input%fld ! the input v-wind data
call baclose (iunit, iret)
!---------------------------------------------------------------------------
! setup arguments for ipolatev (vector interpolation) call.
!---------------------------------------------------------------------------
km = 1 ! number of records to interpolate
ip = 0 ! bilinear interpolation
ipopt = 0 ! options for bilinear:
ipopt(1) = 75 ! set minimum mask to 75%
!---------------------------------------------------------------------------
! interpolate to four random station points.
!---------------------------------------------------------------------------
mo = 4
no = mo
!---------------------------------------------------------------------------
! when interpolating to random station points, need to pass to ipolatev
! their latitude, longitude and the sines and cosines of the vector
! rotation angles. the vector rotation is defined:
!
! ugrid=crot*uearth-sort*vearth
! vgrid=srot*uearth+cort*vearth
!---------------------------------------------------------------------------
allocate (output_rlat(mo))
allocate (output_rlon(mo))
allocate (output_srot(mo))
allocate (output_crot(mo))
allocate (output_u_data(mo))
allocate (output_v_data(mo))
allocate (output_bitmap(mo))
output_rlat(1) = 45.0
output_rlon(1) = -100.0
output_rlat(2) = 35.0
output_rlon(2) = -100.0
output_rlat(3) = 40.0
output_rlon(3) = -90.0
output_rlat(4) = 35.0
output_rlon(4) = -120.0
output_srot = 0.0 ! no turning of wind
output_crot = 1.0
!---------------------------------------------------------------------------
! call ipolatev to interpolate vector data. non-zero "iret" indicates
! a problem.
!---------------------------------------------------------------------------
call ipolatev(ip, ipopt, gfld_input%igdtnum, gfld_input%igdtmpl, &
gfld_input%igdtlen, igdtnumo, igdtmplo, igdtleno, &
mi, mo, km, ibi, input_bitmap, input_u_data, input_v_data, &
no, output_rlat, output_rlon, output_crot, output_srot, &
ibo, output_bitmap, output_u_data, output_v_data, iret)
if (iret /= 0) stop
do k = 1, mo
print*,'station point ',k,' latitude ',output_rlat(k),' longitude ', &
output_rlon(k), ' u-wind ', output_u_data(k), ' v-wind ', output_v_data(k)
enddo
end program example_2

Examples: Spectral Processing & Transformation

Example 1. Interpolate heights and winds from a latlon grid to two antipodal polar stereographic grids. Subprograms GETGB and PUTGB from w3lib are referenced.

c unit number 11 is the input latlon grib file
c unit number 31 is the input latlon grib index file
c unit number 51 is the output northern polar stereographic grib file
c unit number 52 is the output southern polar stereographic grib file
c nominal spectral truncation is r40
c maximum input gridsize is 360x181
c maximum number of levels wanted is 12
parameter(lug=11,lui=31,lun=51,lus=52)
parameter(iromb=1,maxwv=40,jf=360*181,kx=12)
integer kp5(kx),kp6(kx),kp7(kx)
integer kpo(kx)
data kpo/1000,850,700,500,400,300,250,200,150,100,70,50/
c height
km=12
kp5=7
kp6=100
kp7=kpo
call gs65(lug,lui,lun,lus,jf,km,kp5,kp6,kp7,iromb,maxwv)
c winds
km=12
kp5=33
kp6=100
kp7=kpo
call gv65(lug,lui,lun,lus,jf,km,kp5,kp6,kp7,iromb,maxwv)
c
stop
end
c
subroutine gs65(lug,lui,lun,lus,jf,km,kp5,kp6,kp7,iromb,maxwv)
c interpolates a scalar field using spectral transforms.
integer kp5(km),kp6(km),kp7(km)
c output grids are 65x65 (381 km true at latitide 60).
c nh grid oriented at 280E; sh grid oriented at 100E.
parameter(nph=32,nps=2*nph+1,npq=nps*nps)
parameter(true=60.,xmesh=381.e3,orient=280.)
parameter(rerth=6.3712e6)
parameter(pi=3.14159265358979,dpr=180./pi)
real gn(npq,km),gs(npq,km)
integer jpds(25),jgds(22),kpds(25,km),kgds(22,km)
logical lb(jf)
real f(jf,km)
c
g2=((1.+sin(abs(true)/dpr))*rerth/xmesh)**2
r2=2*nph**2
rlatn1=dpr*asin((g2-r2)/(g2+r2))
rlonn1=mod(orient+315,360.)
rlats1=-rlatn1
rlons1=mod(rlonn1+270,360.)
jpds=-1
do k=1,km
jpds(5)=kp5(k)
jpds(6)=kp6(k)
jpds(7)=kp7(k)
j=0
call getgb(lug,lui,jf,j,jpds,jgds,kf,j,kpds(1,k),kgds(1,k),
& lb,f(1,k),iret)
if(iret.ne.0) call exit(1)
if(mod(kpds(4,k)/64,2).eq.1) call exit(2)
enddo
idrt=kgds(1,1)
imax=kgds(2,1)
jmax=kgds(3,1)
c
call sptruns(iromb,maxwv,idrt,imax,jmax,km,nps,
& 0,0,0,jf,0,0,0,0,true,xmesh,orient,f,gn,gs)
c
do k=1,km
kpds(3,k)=27
kgds(1,k)=5
kgds(2,k)=nps
kgds(3,k)=nps
kgds(4,k)=nint(rlatn1*1.e3)
kgds(5,k)=nint(rlonn1*1.e3)
kgds(6,k)=8
kgds(7,k)=nint(orient*1.e3)
kgds(8,k)=nint(xmesh)
kgds(9,k)=nint(xmesh)
kgds(10,k)=0
kgds(11,k)=64
call putgb(lun,npq,kpds(1,k),kgds(1,k),lb,gn(1,k),iret)
enddo
do k=1,km
kpds(3,k)=28
kgds(1,k)=5
kgds(2,k)=nps
kgds(3,k)=nps
kgds(4,k)=nint(rlats1*1.e3)
kgds(5,k)=nint(rlons1*1.e3)
kgds(6,k)=8
kgds(7,k)=nint(mod(orient+180,360.)*1.e3)
kgds(8,k)=nint(xmesh)
kgds(9,k)=nint(xmesh)
kgds(10,k)=128
kgds(11,k)=64
call putgb(lus,npq,kpds(1,k),kgds(1,k),lb,gs(1,k),iret)
enddo
c
end
c
subroutine gv65(lug,lui,lun,lus,jf,km,kp5,kp6,kp7,iromb,maxwv)
c interpolates a vector field using spectral transforms.
integer kp5(km),kp6(km),kp7(km)
c output grids are 65x65 (381 km true at latitide 60).
c nh grid oriented at 280E; sh grid oriented at 100E.
c winds are rotated to be relative to grid coordinates.
parameter(nph=32,nps=2*nph+1,npq=nps*nps)
parameter(true=60.,xmesh=381.e3,orient=280.)
parameter(rerth=6.3712e6)
parameter(pi=3.14159265358979,dpr=180./pi)
real un(npq,km),vn(npq,km),us(npq,km),vs(npq,km)
integer jpds(25),jgds(22),kpds(25,km),kgds(22,km)
logical lb(jf)
real u(jf,km),v(jf,km)
c
g2=((1.+sin(abs(true)/dpr))*rerth/xmesh)**2
r2=2*nph**2
rlatn1=dpr*asin((g2-r2)/(g2+r2))
rlonn1=mod(orient+315,360.)
rlats1=-rlatn1
rlons1=mod(rlonn1+270,360.)
jpds=-1
do k=1,km
jpds(5)=kp5(k)
jpds(6)=kp6(k)
jpds(7)=kp7(k)
j=0
call getgb(lug,lui,jf,j,jpds,jgds,kf,j,kpds(1,k),kgds(1,k),
& lb,u(1,k),iret)
if(iret.ne.0) call exit(1)
if(mod(kpds(4,k)/64,2).eq.1) call exit(2)
jpds=kpds(:,k)
jgds=kgds(:,k)
jpds(5)=jpds(5)+1
j=0
call getgb(lug,lui,jf,j,jpds,jgds,kf,j,kpds(1,k),kgds(1,k),
& lb,v(1,k),iret)
if(iret.ne.0) call exit(1)
if(mod(kpds(4,k)/64,2).eq.1) call exit(2)
enddo
idrt=kgds(1,1)
imax=kgds(2,1)
jmax=kgds(3,1)
c
call sptrunsv(iromb,maxwv,idrt,imax,jmax,km,nps,
& 0,0,0,jf,0,0,0,0,true,xmesh,orient,u,v,
& .true.,un,vn,us,vs,.false.,dum,dum,dum,dum,
& .false.,dum,dum,dum,dum)
c
do k=1,km
kpds(3,k)=27
kgds(1,k)=5
kgds(2,k)=nps
kgds(3,k)=nps
kgds(4,k)=nint(rlatn1*1.e3)
kgds(5,k)=nint(rlonn1*1.e3)
kgds(6,k)=8
kgds(7,k)=nint(orient*1.e3)
kgds(8,k)=nint(xmesh)
kgds(9,k)=nint(xmesh)
kgds(10,k)=0
kgds(11,k)=64
kpds(5,k)=kp5(k)
call putgb(lun,npq,kpds(1,k),kgds(1,k),lb,un(1,k),iret)
enddo
do k=1,km
kpds(3,k)=27
kgds(1,k)=5
kgds(2,k)=nps
kgds(3,k)=nps
kgds(4,k)=nint(rlatn1*1.e3)
kgds(5,k)=nint(rlonn1*1.e3)
kgds(6,k)=8
kgds(7,k)=nint(orient*1.e3)
kgds(8,k)=nint(xmesh)
kgds(9,k)=nint(xmesh)
kgds(10,k)=0
kgds(11,k)=64
kpds(5,k)=kp5(k)+1
call putgb(lun,npq,kpds(1,k),kgds(1,k),lb,vn(1,k),iret)
enddo
do k=1,km
kpds(3,k)=28
kgds(1,k)=5
kgds(2,k)=nps
kgds(3,k)=nps
kgds(4,k)=nint(rlats1*1.e3)
kgds(5,k)=nint(rlons1*1.e3)
kgds(6,k)=8
kgds(7,k)=nint(mod(orient+180,360.)*1.e3)
kgds(8,k)=nint(xmesh)
kgds(9,k)=nint(xmesh)
kgds(10,k)=128
kgds(11,k)=64
kpds(5,k)=kp5(k)
call putgb(lus,npq,kpds(1,k),kgds(1,k),lb,us(1,k),iret)
enddo
do k=1,km
kpds(3,k)=28
kgds(1,k)=5
kgds(2,k)=nps
kgds(3,k)=nps
kgds(4,k)=nint(rlats1*1.e3)
kgds(5,k)=nint(rlons1*1.e3)
kgds(6,k)=8
kgds(7,k)=nint(mod(orient+180,360.)*1.e3)
kgds(8,k)=nint(xmesh)
kgds(9,k)=nint(xmesh)
kgds(10,k)=128
kgds(11,k)=64
kpds(5,k)=kp5(k)+1
call putgb(lus,npq,kpds(1,k),kgds(1,k),lb,vs(1,k),iret)
enddo
c
end
subroutine sptruns(IROMB, MAXWV, IDRTI, IMAXI, JMAXI, KMAX, NPS, IPRIME, ISKIPI, JSKIPI, KSKIPI, KGSKIP, NISKIP, NJSKIP, JCPU, TRUE, XMESH, ORIENT, GRIDI, GN, GS)
This subprogram spectrally truncates scalar fields on a global cylindrical grid, returning the fields...
Definition: sptruns.f:75
subroutine sptrunsv(IROMB, MAXWV, IDRTI, IMAXI, JMAXI, KMAX, NPS, IPRIME, ISKIPI, JSKIPI, KSKIPI, KGSKIP, NISKIP, NJSKIP, JCPU, TRUE, XMESH, ORIENT, GRIDUI, GRIDVI, LUV, UN, VN, US, VS, LDZ, DN, ZN, DS, ZS, LPS, PN, SN, PS, SS)
This subprogram spectrally truncates vector fields on a global cylindrical grid, returning the fields...
Definition: sptrunsv.f:94

Example 2. Spectrally truncate winds in place on a latlon grid.

c unit number 11 is the input latlon grib file
c unit number 31 is the input latlon grib index file
c unit number 51 is the output latlon grib file
c nominal spectral truncation is r40
c maximum input gridsize is 360x181
c maximum number of levels wanted is 12
parameter(lug=11,lui=31,luo=51)
parameter(iromb=1,maxwv=40,jf=360*181,kx=12)
integer kp5(kx),kp6(kx),kp7(kx)
integer kpo(kx)
data kpo/1000,850,700,500,400,300,250,200,150,100,70,50/
c winds
km=12
kp5=33
kp6=100
kp7=kpo
call gvr40(lug,lui,luo,jf,km,kp5,kp6,kp7,iromb,maxwv)
c
stop
end
c
subroutine gvr40(lug,lui,luo,jf,km,kp5,kp6,kp7,iromb,maxwv)
c interpolates a vector field using spectral transforms.
integer kp5(km),kp6(km),kp7(km)
integer jpds(25),jgds(22),kpds(25,km),kgds(22,km)
logical lb(jf)
real u(jf,km),v(jf,km)
c
jpds=-1
do k=1,km
jpds(5)=kp5(k)
jpds(6)=kp6(k)
jpds(7)=kp7(k)
j=0
call getgb(lug,lui,jf,j,jpds,jgds,kf,j,kpds(1,k),kgds(1,k),
& lb,u(1,k),iret)
if(iret.ne.0) call exit(1)
if(mod(kpds(4,k)/64,2).eq.1) call exit(2)
jpds=kpds(:,k)
jgds=kgds(:,k)
jpds(5)=jpds(5)+1
j=0
call getgb(lug,lui,jf,j,jpds,jgds,kf,j,kpds(1,k),kgds(1,k),
& lb,v(1,k),iret)
if(iret.ne.0) call exit(1)
if(mod(kpds(4,k)/64,2).eq.1) call exit(2)
enddo
idrt=kgds(1,1)
imax=kgds(2,1)
jmax=kgds(3,1)
c
call sptrunv(iromb,maxwv,idrt,imax,jmax,idrt,imax,jmax,km,
& 0,0,0,jf,0,0,jf,0,u,v,.true.,u,v,
& .false.,dum,dum,.false.,dum,dum)
c
do k=1,km
kpds(5,k)=kp5(k)
call putgb(luo,kf,kpds(1,k),kgds(1,k),lb,u(1,k),iret)
enddo
do k=1,km
kpds(5,k)=kp5(k)+1
call putgb(luo,kf,kpds(1,k),kgds(1,k),lb,v(1,k),iret)
enddo
c
end
subroutine sptrunv(IROMB, MAXWV, IDRTI, IMAXI, JMAXI, IDRTO, IMAXO, JMAXO, KMAX, IPRIME, ISKIPI, JSKIPI, KSKIPI, ISKIPO, JSKIPO, KSKIPO, JCPU, GRIDUI, GRIDVI, LUV, GRIDUO, GRIDVO, LDZ, GRIDDO, GRIDZO, LPS, GRIDPO, GRIDSO)
This subprogram spectrally truncates vector fields on a global cylindrical grid, returning the fields...
Definition: sptrunv.f:96

Example 3. Compute latlon temperatures from spectral temperatures and compute latlon winds from spectral divergence and vorticity.

c unit number 11 is the input sigma file
c unit number 51 is the output latlon file
c nominal spectral truncation is t62
c output gridsize is 144x73
c number of levels is 28
parameter(iromb=0,maxwv=62)
parameter(idrt=0,im=144,jm=73)
parameter(levs=28)
parameter(mx=(maxwv+1)*((iromb+1)*maxwv+2)/2)
real t(mx,levs),d(mx,levs),z(mx,levs)
real tg(im,jm,km),ug(im,jm,km),vg(im,jm,km)
c temperature
do k=1,4
read(11)
enddo
do k=1,levs
read(11) (t(m,k),m=1,mx)
enddo
call sptran(iromb,maxwv,idrt,im,jm,levs,0,0,0,0,0,0,0,0,1,
& t,tg(1,1,1),tg(1,jm,1),1)
call sptran(
do k=1,levs
write(51) ((tg(i,j,k),i=1,im),j=1,jm)
enddo
c winds
do k=1,levs
read(11) (d(m,k),m=1,mx)
read(11) (z(m,k),m=1,mx)
enddo
call sptranv(iromb,maxwv,idrt,im,jm,levs,0,0,0,0,0,0,0,0,1,
& d,z,ug(1,1,1),ug(1,jm,1),vg(1,1,1),vg(1,jm,1),1)
do k=1,levs
write(51) ((ug(i,j,k),i=1,im),j=1,jm)
write(51) ((vg(i,j,k),i=1,im),j=1,jm)
enddo
end
subroutine sptran(IROMB, MAXWV, IDRT, IMAX, JMAX, KMAX, IPRIME, ISKIP, JNSKIP, JSSKIP, KWSKIP, KGSKIP, JBEG, JEND, JCPU, WAVE, GRIDN, GRIDS, IDIR)
This subprogram performs a spherical transform between spectral coefficients of scalar quantities and...
Definition: sptran.f:88
subroutine sptranv(IROMB, MAXWV, IDRT, IMAX, JMAX, KMAX, IPRIME, ISKIP, JNSKIP, JSSKIP, KWSKIP, KGSKIP, JBEG, JEND, JCPU, WAVED, WAVEZ, GRIDUN, GRIDUS, GRIDVN, GRIDVS, IDIR)
This subprogram performs a spherical transform between spectral coefficients of divergences and curls...
Definition: sptranv.f:91