NCEPLIBS-ip  5.1.0
speps.f
Go to the documentation of this file.
1 C> @file
2 C> @brief Compute utility spectral fields.
3 C> @author Iredell @date 92-10-31
4 
5 C> Computes constant fields indexed in the spectral domain
6 C> in "IBM ORDER" (Zonal wavenumber is the slower index).
7 C>
8 C> If L is the zonal wavenumber and N is the total wavenumber
9 C> and A is the earth radius, then the fields returned are:
10 C> - (1) normalizing factor EPSILON=SQRT((N**2-L**2)/(4*N**2-1))
11 C> - (2) Laplacian factor N*(N+1)/A**2
12 C> - (3) zonal derivative/Laplacian factor L/(N*(N+1))*A
13 C> - (4) Meridional derivative/Laplacian factor EPSILON/N*A
14 C>
15 C> @param I spectral domain shape (0 for triangular, 1 for rhomboidal)
16 C> @param M spectral truncation
17 C> @param EPS ((M+1)*((I+1)*M+2)/2) SQRT((N**2-L**2)/(4*N**2-1))
18 C> @param EPSTOP (M+1) SQRT((N**2-L**2)/(4*N**2-1)) OVER TOP
19 C> @param ENN1 ((M+1)*((I+1)*M+2)/2) N*(N+1)/A**2
20 C> @param ELONN1 ((M+1)*((I+1)*M+2)/2) L/(N*(N+1))*A
21 C> @param EON ((M+1)*((I+1)*M+2)/2) EPSILON/N*A
22 C> @param EONTOP (M+1) EPSILON/N*A OVER TOP
23 C>
24 C> @author Iredell @date 92-10-31
25  SUBROUTINE speps(I,M,EPS,EPSTOP,ENN1,ELONN1,EON,EONTOP)
26  REAL EPS((M+1)*((I+1)*M+2)/2),EPSTOP(M+1)
27  REAL ENN1((M+1)*((I+1)*M+2)/2),ELONN1((M+1)*((I+1)*M+2)/2)
28  REAL EON((M+1)*((I+1)*M+2)/2),EONTOP(M+1)
29  parameter(rerth=6.3712e6,ra2=1./rerth**2)
30 
31  DO l=0,m
32  k=l*(2*m+(i-1)*(l-1))/2+l+1
33  eps(k)=0.
34  enn1(k)=ra2*l*(l+1)
35  elonn1(k)=rerth/(l+1)
36  eon(k)=0.
37  ENDDO
38  DO l=0,m
39  DO n=l+1,i*l+m
40  k=l*(2*m+(i-1)*(l-1))/2+n+1
41  eps(k)=sqrt(float(n**2-l**2)/float(4*n**2-1))
42  enn1(k)=ra2*n*(n+1)
43  elonn1(k)=rerth*l/(n*(n+1))
44  eon(k)=rerth/n*eps(k)
45  ENDDO
46  ENDDO
47  DO l=0,m
48  n=i*l+m+1
49  epstop(l+1)=sqrt(float(n**2-l**2)/float(4*n**2-1))
50  eontop(l+1)=rerth/n*epstop(l+1)
51  ENDDO
52  RETURN
53  END
subroutine speps(I, M, EPS, EPSTOP, ENN1, ELONN1, EON, EONTOP)
Computes constant fields indexed in the spectral domain in "IBM ORDER" (Zonal wavenumber is the slowe...
Definition: speps.f:26