|
NCEPLIBS-sp
2.5.0
|
Compute laplacian in spectral space. More...
Go to the source code of this file.
Functions/Subroutines | |
| subroutine | splaplac (I, M, ENN1, Q, QD2, IDIR) |
| Computes the laplacian or the inverse laplacian of a scalar field in spectral space. More... | |
| subroutine splaplac | ( | I, | |
| M, | |||
| real, dimension((m+1)*((i+1)*m+2)/2) | ENN1, | ||
| real, dimension((m+1)*((i+1)*m+2)) | Q, | ||
| real, dimension((m+1)*((i+1)*m+2)) | QD2, | ||
| IDIR | |||
| ) |
Computes the laplacian or the inverse laplacian of a scalar field in spectral space.
Subprogram speps() should be called already.
The Laplacian of Q(L,N) is simply -N*(N+1)/A**2*Q(L,N)
| I | spectral domain shape (0 for triangular, 1 for rhomboidal) | |
| M | spectral truncation | |
| ENN1 | N*(N+1)/A**2 | |
| [out] | Q | if IDIR > 0, scalar field (Q(0,0) is not computed) |
| [out] | QD2 | if IDIR < 0, Laplacian |
| IDIR | flag
|
Definition at line 24 of file splaplac.f.
Referenced by sptgpmd(), sptgpsd(), sptgptd(), sptrand(), sptrungv(), sptrunl(), sptrunmv(), sptrunsv(), and sptrunv().