NCEPLIBS-w3emc  2.11.0
w3ft08.f
Go to the documentation of this file.
1 C> @file
2 C> @brief Computes 2.5 x 2.5 n. hemi. grid-scaler.
3 C> @author Joe Sela @date 1988-06-20
4 
5 C> Computes 2.5 x 2.5 n. hemi. grid of 145 x 37 points
6 C> from spectral coefficients in a rhomboidal 30 resolution
7 C> representing a scaler field.
8 C>
9 C> ### Program History Log:
10 C> Date | Programmer | Comment
11 C> -----|------------|--------
12 C> 1988-06-20 | Joe Sela | Initial.
13 C> 1988-06-20 | Ralph Jones | Change to microsoft fortran 4.10.
14 C> 1990-06-12 | Ralph Jones | Change to sun fortran 1.3.
15 C> 1991-03-30 | Ralph Jones | Convert to silicongraphics fortran.
16 C> 1993-03-29 | Ralph Jones | Add save statement.
17 C> 1993-07-22 | Ralph Jones | Change double precision to real for cray.
18 C>
19 C> @param[in] FLN 961 complex coeff.
20 C> @param[in] PLN 992 real space for legendre polynomials.
21 C> @param[in] EPS 992 real space for
22 C> coeffs. used in computing pln.
23 C> @param[in] FL 31 complex space for fourier coeff.
24 C> @param[in] WORK 144 real work space for subr. w3ft12()
25 C> @param[in] TRIGS 216 precomputed trig funcs. used
26 C> in w3ft12(), computed by w3fa13()
27 C> @param[out] GN (145,37) grid values. 5365 point grid is type 29 or
28 C> 1d hex o.n. 84
29 C>
30 C> @note This subroutine was optimized to run in a small amount of
31 C> memory, it is not optimized for speed, 70 percent of the time is
32 C> used by subroutine w3fa12 computing the legendre polynomials. since
33 C> the legendre polynomials are constant they need to be computed
34 C> only once in a program. By moving w3fa12() to the main program and
35 C> computing pln as a (32,31,37) array and changing this subroutine
36 C> to use pln as a three dimension array you can cut the running time
37 C> 70 percent. w3ft38() has these improvements.
38 C>
39 C> @author Joe Sela @date 1988-06-20
40  SUBROUTINE w3ft08(FLN,GN,PLN,EPS,FL,WORK,TRIGS)
41 C
42  COMPLEX FL( 31 )
43  COMPLEX FLN( 31 , 31 )
44 C
45  REAL COLRA
46  REAL EPS(992)
47  REAL GN(145,37)
48  REAL PLN( 32 , 31 )
49  REAL TRIGS(216)
50  REAL WORK(144)
51 C
52  SAVE
53 C
54  DATA pi /3.14159265/
55 C
56  drad = 2.5 * pi / 180.0
57 C
58  DO 400 lat = 1,37
59  latn = 38 - lat
60  colra = (lat - 1) * drad
61  CALL w3fa12(pln,colra, 30 ,eps)
62 C
63  DO 100 l = 1, 31
64  fl(l) = (0.,0.)
65  100 CONTINUE
66 C
67  DO 300 l = 1, 31
68  DO 200 i = 1, 31
69  fl(l) = fl(l) + cmplx(pln(i,l) * real(fln(i,l)) ,
70  & pln(i,l) * aimag(fln(i,l)) )
71  200 CONTINUE
72 C
73  300 CONTINUE
74 C
75  CALL w3ft12(fl,work,gn(1,latn),trigs)
76 C
77  400 CONTINUE
78 C
79  RETURN
80  END
subroutine w3ft08(FLN, GN, PLN, EPS, FL, WORK, TRIGS)
Computes 2.5 x 2.5 n.
Definition: w3ft08.f:41
subroutine w3ft12(COEF, WORK, GRID, TRIGS)
Fast fourier to compute 145 grid values at desired latitude from 31 complex fourier coefficients.
Definition: w3ft12.f:25