NCEPLIBS-ip
4.4.0
|
The NCEP general interpolation library (NCEPLIBS-ip) contains Fortran 90 subprograms to be used for interpolating between nearly all grids used at NCEP. The library is particularly efficient when interpolating many fields at one time.
NCEPLIBS-ip supports compilation with the GNU Compiler Collection (gfortran), Intel Classic (ifort), and Intel OneAPI (ifx) compilers. In the case of Intel LLVM, it is recommended to use at least version 2023.2.1 to avoid any number of compiler issues.
There are currently six interpolation methods available in the library:
Some of the methods have interpolation sub-options. A few methods have restrictions on the type of input or output grids.
Several methods can perform interpolation on fields with bitmaps (i.e. some points on the input grid may be undefined). In this case, the bitmap is interpolated to the output grid. Only valid input points are used to interpolate to valid output points. An output bitmap will also be created to locate invalid data where the output grid extends outside the domain of the input grid.
The driver routines for interpolating scalars and vectors may be found in ipolates_mod. The interpolation method is chosen via the first argument of these routines (variable IP). Sub-options are set via the IPOPT array.
It should be noted that some routines may behave poorly or unpredictably when using 4-byte reals (libip_4). For instance, there is an ATAN2 function used for polar stereo grids where for certain grids/coordinates, floating point differences between 4-byte output values (~1e-7) can be amplified into noticeable differences in output field values. Some applications may therefore benefit from the use of 8-byte reals (libip_d).
Bilinear interpolation is chosen by setting IP=0.
This method has two sub-options:
The bilinear method has no restrictions and can interpolate with bitmaps.
Bicubic interpolation is chosen by setting IP=1.
This method has two sub-options:
The bicubic method cannot interpolate data with bitmaps.
Neighbor interpolation is chosen by setting IP=2.
Neighbor interpolation means that the output value is set to the nearest input value. It would be appropriate for interpolating integer fields such as vegetation index.
This method has one sub-option: If valid input data is not found near an an output point, a spiral search is optionally performed.
The neighbor method has no restrictions and can interpolate with bitmaps.
Budget interpolation is chosen by setting IP=3.
Budget interpolation means a low-order interpolation method that quasi-conserves area averages. It would be appropriate for interpolating budget fields such as precipitation.
This method assumes that the field really represents box averages where each box extends halfway to its neighboring grid point in each direction. The method actually averages bilinearly interpolated values in a square array of points distributed within each output grid box.
There are several sub-options:
This method can interpolate data with bitmaps.
Spectral interpolation is chosen by setting IP=4.
This method has two sub-options:
The input grid must be a global cylindrical grid (either Gaussian or equidistant). This method cannot interpolate data with bitmaps.
Unless the output grid is a global cylindrical grid, a polar stereographic grid centered at the pole, or a Mercator grid, this method can be quite expensive.
Neighbor-budget interpolation is chosen by setting IP=6.
This method computes weighted averages of neighbor points arranged in a square box centered around each output grid point and stretching nearly halfway to each of the neighboring grid points. The main difference with the budget interpolation (IP=3) is neighbor vs bilinear interpolation of the square box of points.
There are the following sub-options:
The library can handle two-dimensional vector fields as well as scalar fields. The input and output vectors are rotated if necessary so that they are either resolved relative to their defined grid in the direction of increasing x and y coordinates or resolved relative to eastward and northward directions on the earth. The rotation is determined by the grid definitions.
Vectors are generally interpolated (by all methods except spectral interpolation) by moving the relevant input vectors along a great circle to the output point, keeping their orientations with respect to the great circle constant, before independently interpolating the respective components. This ensures that vector interpolation will be consistent over the whole globe including the poles.
The input and output grids are defined by their respective GRIB2 grid definition template and template number as decoced by the NCEP G2 library. There are six map projections recognized by the library:
Grid Template Number | Map projection |
---|---|
00 | Equidistant cyclindrical |
01 | Rotated equidistant cylindrical |
10 | Mercator cyclindrical |
20 | Polar stereographic azimuthal |
30 | Lambert conformal conical |
40 | Gaussian equidistant cyclindrical |
If the output grid definition template number is negative, then the output data may be just a set of station points. In this case, the user must pass the number of points to be output along with their latitudes and longitudes.
For vector interpolation, the vector rotations parameters must also be passed. On the other hand, for non-negative output data representation types, the number of output grid points and their latitudes and longitudes (and the vector rotation parameters for vector interpolation) are all returned by the interpolation subprograms.
If an output equidistant cylindrical grid contains multiple pole points, then the pole points are forced to be self-consistent. That is, scalar fields are obliged to be constant at the pole and vector components are obliged to exhibit a wavenumber one variation at the pole.
Generally, only regular grids can be interpolated in this library. However, the thinned WAFS grids may be expanded to a regular grid (or vice versa) using subprograms ipxwafs(), ipxwafs2(), or ipxwafs3(). Eta data (with Arakawa "E" staggering) on the "H" or "V" grid may be expanded to a filled regular grid (or vice versa) using subprogram ipxetas().
The return code issued by an interpolation subprogram determines whether it ran successfully or how it failed. Check nonzero return codes against the docblock of the respective subprogram.
Scalar and vecotr field interpolation subprograms can be found in the relevant module documentation:
Name | Function |
---|---|
ipolates_mod | Iredell's polate |
bilinear_interp_mod | bilinear interpolation |
bicubic_interp_mod | bicubic interpolation |
neighbor_interp_mod | neighbor interpolation |
budget_interp_mod | budget interpolation |
spectral_interp_mod | spectral interpolation |
neighbor_budget_interp_mod | neighbor-budget interpolation |
polfixs() | make multiple pole scalar values consistent |
movect() | move a vector along a great circle |
polfixv() | make multiple pole vector values consistent |
Grid description section decoders:
Name | Function |
---|---|
gdswzd() | grid description section (GDS) wizard |
gdswzd_c() | C wrapper for calling gdswzd |
gdswzd_equid_cylind() | GDS wizard for equidistant cyclindrical |
gdswzd_mercator() | GDS wizard for mercator cyclindrical |
gdswzd_lambert_conf() | GDS wizard for lambert conformal conical |
gdswzd_gaussian() | GDS wizard for gaussian cyclindrical |
gdswzd_polar_stereo() | GDS wizard for polar stereographic |
gdswzd_rot_equid_cylind_egrid() | GDS wizard for rotated equidistant cyclindrical "e" stagger. |
gdswzd_rot_equid_cylind() | GDS wizard for rotated equidistant cyclindrical non "e" stagger. |
field_pos() | return field position for a given grid point |
Transform subprograms for special irregular grids:
Name | Function |
---|---|
ipxwafs() | expand or contract wafs grids |
ipxwafs2() | expand or contract wafs grids |
ipxwafs3() | expand or contract wafs grids |
*********************************************************************** Example 1. Read a grib 2 file of scalar data on a global regular 1-deg lat/lon grid and call ipolates to interpolate it to NCEP standard grid 218, a lambert conformal grid. Uses the NCEP G2 library to degrib the data. *********************************************************************** program example_1 use ip_mod use grib_mod ! ncep grib 2 library implicit none character(len=100) :: input_file integer :: iunit, iret, lugi integer :: mi, mo, no integer, allocatable :: ibi(:), ibo(:) integer :: ip, ipopt(20) integer :: j, jdisc, jpdtn, jgdtn, k, km integer :: jids(200), jgdt(200), jpdt(200) integer :: idim_input, jdim_input integer :: idim_output, jdim_output logical :: unpack logical*1, allocatable :: input_bitmap(:,:), output_bitmap(:,:) real, allocatable :: input_data(:,:) real, allocatable :: output_rlat(:), output_rlon(:) real, allocatable :: output_data(:,:) type(gribfield) :: gfld_input !--------------------------------------------------------------------------- ! the output grid specs. this is ncep grid 218, a lambert conformal ! grid. the grid definition information is stored in section 3 ! of a grib 2 message. !--------------------------------------------------------------------------- integer, parameter :: igdtnum218 = 30 ! grid definition template number. ! "30" is lambert conformal. integer, parameter :: igdtlen218 = 22 ! number of array elements needed ! for a lambert conf. grid definition ! template. integer :: igdtmpl218(igdtlen218) ! the grid definition template. ! the entries are: ! 1 -shape of earth, oct 15 ! 2 -scale factor, spherical earth, oct 16 ! 3 -scaled value, spherical earth, octs 17-20 ! 4 -scale factor, major axis of ! elliptical earth, oct 21 ! 5 -scaled value of major axis of ! elliptical earth, octs 22-25 ! 6 -scale factor, minor axis of ! elliptical earth, oct 26 ! 7 -scaled value of minor axis of ! elliptical earth, octs 27-30 ! 8 -number points along x-axis, octs 31-34 ! 9 -number points along y-axis, octs 35-38 ! 10-latitude of first point, octs 39-42 ! 11-longitude of first point, octs 43-46 ! 12-resolution and component flags, oct 47 ! 13-latitude where grid lengths specified, ! octs 48-51 ! 14-longitude parallel to y-axis, octs 52-55 ! 15-x-direction grid length, octs 56-59 ! 16-y-direction grid length, octs 60-63 ! 17-projection center flag, oct 64 ! 18-scanning mode, oct 65 ! 19-first tangent latitude from pole, octs 66-69 ! 20-second tangent latitude from pole, octs 70-73 ! 21-latitude of south pole, octs 74-77 ! 22-longitude of south pole, octs 78-81 integer, parameter :: missing=b'11111111111111111111111111111111' data igdtmpl218 / 6, 255, missing, 255, missing, 255, missing, 614, 428, & 12190000, 226541000, 56, 25000000, 265000000, & 12191000, 12191000, 0, 64, 25000000, 25000000, -90000000, 0/ !--------------------------------------------------------------------------- ! open the grib 2 file containing data to be interpolated. for this ! example, there are two data records. !--------------------------------------------------------------------------- iunit=9 input_file="${path}/input.data.grib2" call baopenr (iunit, input_file, iret) !--------------------------------------------------------------------------- ! prep for call to g2 library to degrib data. the data are on a regular ! lat/lon grid with i/j dimension of 360/181. !--------------------------------------------------------------------------- idim_input = 360 ! the i/j dimensions of input grid jdim_input = 181 mi = idim_input * jdim_input ! total number of pts, input grid jdisc = -1 ! search for any discipline jpdtn = -1 ! search for any product definition template number jgdtn = 0 ! search for grid definition template number 0 - regular lat/lon grid jids = -9999 ! array of values in identification section, set to wildcard jgdt = -9999 ! array of values in grid definition template 3.m jgdt(8) = idim_input ! search for grid with i/j of 360/181 jgdt(9) = jdim_input jpdt = -9999 ! array of values in product definition template 4.n unpack = .true. ! unpack data lugi = 0 ! no index file nullify(gfld_inputidsect) nullify(gfld_inputlocal) nullify(gfld_inputlist_opt) nullify(gfld_inputigdtmpl) ! holds the grid definition template information nullify(gfld_inputipdtmpl) nullify(gfld_inputcoord_list) nullify(gfld_inputidrtmpl) nullify(gfld_inputbmap) ! holds the bitmap nullify(gfld_inputfld) ! holds the data !--------------------------------------------------------------------------- ! degrib the data. non-zero "iret" indicates a problem during degrib. !--------------------------------------------------------------------------- km = 2 ! number of records to interpolate allocate(ibi(km)) allocate(input_bitmap(mi,km)) allocate(input_data(mi,km)) do j = 0, (km-1) ! number of records to skip call getgb2(iunit, lugi, j, jdisc, jids, jpdtn, jpdt, jgdtn, jgdt, & unpack, k, gfld_input, iret) if (iret /= 0) stop !--------------------------------------------------------------------------- ! does input data have a bitmap? !--------------------------------------------------------------------------- if (gfld_inputibmap==0) then ! input data has bitmap ibi(k) = 1 ! tell ipolates to use bitmap input_bitmap(:,k) = gfld_inputbmap else ! no bitmap, data everywhere ibi(k) = 0 ! tell ipolates there is no bitmap input_bitmap(:,k) = .true. endif input_data(:,k) = gfld_inputfld ! the input data field enddo call baclose (iunit, iret) !--------------------------------------------------------------------------- ! setup arguments for ipolates (scalar interpolation) call. !--------------------------------------------------------------------------- ip = 0 ! bilinear interpolation ipopt = 0 ! options for bilinear: ipopt(1) = 75 ! set minimum mask to 75% !--------------------------------------------------------------------------- ! the i/j dimensions of the output grid. !--------------------------------------------------------------------------- idim_output = igdtmpl218(8) jdim_output = igdtmpl218(9) mo = idim_output * jdim_output ! total number of output pts !--------------------------------------------------------------------------- ! will hold the latitude, longitude, data and bitmap on the output grid, ! which are computed in ipolates. !--------------------------------------------------------------------------- allocate (ibo(km)) ! bitmap flags on output grid allocate (output_rlat(mo)) allocate (output_rlon(mo)) allocate (output_data(mo,km)) allocate (output_bitmap(mo,km)) !--------------------------------------------------------------------------- ! call ipolates to interpolate scalar data. non-zero "iret" indicates ! a problem. !--------------------------------------------------------------------------- call ipolates(ip, ipopt, gfld_inputigdtnum, gfld_inputigdtmpl, & gfld_inputigdtlen, igdtnum218, igdtmpl218, igdtlen218, & mi, mo, km, ibi, input_bitmap, input_data, no, output_rlat, & output_rlon, ibo, output_bitmap, output_data, iret) if (iret /= 0) stop !--------------------------------------------------------------------------- ! write interpolated data to file. if ipolates computed a bitmap (ibo==1) ! for the output grid, one may mask out this data with a flag value. !--------------------------------------------------------------------------- open (10, file="./output.bin", access='direct', recl=idim_output*jdim_output*4) do k = 1, km if(ibo(k)==1) where (.not. output_bitmap(:,k)) output_data(:,k) = -999. write(10, rec=k) output_data(:,k) enddo write(10, rec=km+1) output_rlat write(10, rec=km+2) output_rlon close(10) end program example_1 *********************************************************************** Example 2. Read a grib 2 file of u/v wind data on a global regular 1-deg lat/lon grid and call ipolatev to interpolate it to four random station points. Uses the NCEP G2 library to degrib the data. *********************************************************************** program example_2 use grib_mod ! ncep grib 2 library implicit none character(len=100) :: input_file integer :: iunit, iret, lugi integer :: mi, mo, no integer :: ibi, ibo integer :: ip, ipopt(20) integer :: j, jdisc, jpdtn, jgdtn, k, km integer :: jids(200), jgdt(200), jpdt(200) integer :: idim_input, jdim_input logical :: unpack logical*1, allocatable :: input_bitmap(:), output_bitmap(:) real, allocatable :: input_u_data(:), input_v_data(:) real, allocatable :: output_rlat(:), output_rlon(:) real, allocatable :: output_crot(:), output_srot(:) real, allocatable :: output_u_data(:), output_v_data(:) type(gribfield) :: gfld_input !--------------------------------------------------------------------------- ! the output "grid" is a series of random station points. in this case, ! set the grid definition template number of a negative number. ! the grid definition template array information is not used, so set ! to a flag value. !--------------------------------------------------------------------------- integer, parameter :: igdtnumo = -1 integer, parameter :: igdtleno = 1 integer :: igdtmplo(igdtleno) data igdtmplo / -9999 / !--------------------------------------------------------------------------- ! open the grib 2 file containing data to be interpolated. for this ! example, there is one record of u-wind and v-wind. !--------------------------------------------------------------------------- iunit=9 input_file="./reg_tests/copygb2/data/uv_wind.grb2" call baopenr (iunit, input_file, iret) !--------------------------------------------------------------------------- ! prep for call to g2 library to degrib data. the data are on a regular ! lat/lon grid with i/j dimension of 360/181. !--------------------------------------------------------------------------- idim_input = 360 ! the i/j dimensions of input grid jdim_input = 181 mi = idim_input * jdim_input ! total number of pts, input grid jdisc = -1 ! search for any discipline jpdtn = -1 ! search for any product definition template number jgdtn = 0 ! search for grid definition template number 0 - regular lat/lon grid jids = -9999 ! array of values in identification section, set to wildcard jgdt = -9999 ! array of values in grid definition template 3.m jgdt(8) = idim_input ! search for grid with i/j of 360/181 jgdt(9) = jdim_input jpdt = -9999 ! array of values in product definition template 4.n unpack = .true. ! unpack data lugi = 0 ! no index file nullify(gfld_inputidsect) nullify(gfld_inputlocal) nullify(gfld_inputlist_opt) nullify(gfld_inputigdtmpl) ! holds the grid definition template information nullify(gfld_inputipdtmpl) nullify(gfld_inputcoord_list) nullify(gfld_inputidrtmpl) nullify(gfld_inputbmap) ! holds the bitmap nullify(gfld_inputfld) ! holds the data !--------------------------------------------------------------------------- ! degrib the data. non-zero "iret" indicates a problem during degrib. !--------------------------------------------------------------------------- allocate(input_bitmap(mi)) allocate(input_u_data(mi)) allocate(input_v_data(mi)) !--------------------------------------------------------------------------- ! read u-wind record. !--------------------------------------------------------------------------- j = 0 call getgb2(iunit, lugi, j, jdisc, jids, jpdtn, jpdt, jgdtn, jgdt, & unpack, k, gfld_input, iret) if (iret /= 0) stop !--------------------------------------------------------------------------- ! does input data have a bitmap? !--------------------------------------------------------------------------- if (gfld_inputibmap==0) then ! input data has bitmap ibi = 1 ! tell ipolates to use bitmap input_bitmap = gfld_inputbmap else ! no bitmap, data everywhere ibi = 0 ! tell ipolates there is no bitmap input_bitmap = .true. endif input_u_data = gfld_inputfld ! the input u-wind data !--------------------------------------------------------------------------- ! read v-wind record. !--------------------------------------------------------------------------- j = 1 call getgb2(iunit, lugi, j, jdisc, jids, jpdtn, jpdt, jgdtn, jgdt, & unpack, k, gfld_input, iret) if (iret /= 0) stop input_v_data = gfld_inputfld ! the input v-wind data call baclose (iunit, iret) !--------------------------------------------------------------------------- ! setup arguments for ipolatev (vector interpolation) call. !--------------------------------------------------------------------------- km = 1 ! number of records to interpolate ip = 0 ! bilinear interpolation ipopt = 0 ! options for bilinear: ipopt(1) = 75 ! set minimum mask to 75% !--------------------------------------------------------------------------- ! interpolate to four random station points. !--------------------------------------------------------------------------- mo = 4 no = mo !--------------------------------------------------------------------------- ! when interpolating to random station points, need to pass to ipolatev ! their latitude, longitude and the sines and cosines of the vector ! rotation angles. the vector rotation is defined: ! ! ugrid=crot*uearth-sort*vearth ! vgrid=srot*uearth+cort*vearth !--------------------------------------------------------------------------- allocate (output_rlat(mo)) allocate (output_rlon(mo)) allocate (output_srot(mo)) allocate (output_crot(mo)) allocate (output_u_data(mo)) allocate (output_v_data(mo)) allocate (output_bitmap(mo)) output_rlat(1) = 45.0 output_rlon(1) = -100.0 output_rlat(2) = 35.0 output_rlon(2) = -100.0 output_rlat(3) = 40.0 output_rlon(3) = -90.0 output_rlat(4) = 35.0 output_rlon(4) = -120.0 output_srot = 0.0 ! no turning of wind output_crot = 1.0 !--------------------------------------------------------------------------- ! call ipolatev to interpolate vector data. non-zero "iret" indicates ! a problem. !--------------------------------------------------------------------------- call ipolatev(ip, ipopt, gfld_inputigdtnum, gfld_inputigdtmpl, & gfld_inputigdtlen, igdtnumo, igdtmplo, igdtleno, & mi, mo, km, ibi, input_bitmap, input_u_data, input_v_data, & no, output_rlat, output_rlon, output_crot, output_srot, & ibo, output_bitmap, output_u_data, output_v_data, iret) if (iret /= 0) stop do k = 1, mo print*,'station point ',k,' latitude ',output_rlat(k),' longitude ', & output_rlon(k), ' u-wind ', output_u_data(k), ' v-wind ', output_v_data(k) enddo end program example_2