Note
Go to the end to download the full example code.
Layered histograms#
This example shows how to plot multiple histograms as layers on single plot.
import numpy as np
import matplotlib.pyplot as plt
from emcpy.plots.plots import Histogram
from emcpy.plots.create_plots import CreatePlot, CreateFigure
def main():
# Generate test data for histogram plots
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
data1 = mu + sigma * np.random.randn(450)
data2 = mu + sigma * np.random.randn(225)
# Create histogram objects
hst1 = Histogram(data1)
hst1.color = 'tab:green'
hst1.alpha = 0.7
hst1.label = 'data 1'
hst2 = Histogram(data2)
hst2.color = 'tab:purple'
hst2.alpha = 0.7
hst2.label = 'data 2'
# Create histogram plot object and add features
plot1 = CreatePlot()
plot1.plot_layers = [hst1, hst2]
plot1.add_title(label='Test Histogram Plot')
plot1.add_xlabel(xlabel='X Axis Label')
plot1.add_ylabel(ylabel='Y Axis Label')
plot1.add_legend()
# Create figure and save as png
fig = CreateFigure()
fig.plot_list = [plot1]
fig.create_figure()
plt.show()
if __name__ == '__main__':
main()
Total running time of the script: (0 minutes 0.073 seconds)